(Windows)Python 2.7 学习笔记 五十六 常用内建模块

2020-11-21 11:04:55

常用内建模块

Python之所以自称“batteries included”,就是因为内置了许多非常有用的模块,无需额外安装和配置,即可直接使用。

本章将介绍一些常用的内建模块。

collections

collections是Python内建的一个集合模块,提供了许多有用的集合类。

namedtuple

我们知道 tuple 可以表示不变集合,例如,一个点的二维坐标就可以表示成:

C:\Users\Administrator\Desktop>python
Python 2.7.12 (v2.7.12:d33e0cf91556, Jun 27 2016, 15:24:40) [MSC v.1500 64 bit (
AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> p = (1, 2)
>>>

但是,看到 (1, 2) ,很难看出这个 tuple 是用来表示一个坐标的。

定义一个class又小题大做了,这时, namedtuple 就派上了用场:

>>> from collections import namedtuple
>>> Point = namedtuple('Point', ['x', 'y'])
>>> p = Point(1, 2)
>>> p.x
1
>>> p.y
2
>>>

namedtuple 是一个函数,它用来创建一个自定义的 tuple 对象,并且规定了 tuple 元素的个数,并可以用属性而不是索引来引用 tuple 的某个元素。

这样一来,我们用 namedtuple 可以很方便地定义一种数据类型,它具备tuple的不变性,又可以根据属性来引用,使用十分方便。

可以验证创建的 Point 对象是 tuple 的一种子类:

>>> isinstance(p, Point)
True
>>> isinstance(p, tuple)
True
>>>

类似的,如果要用坐标和半径表示一个圆,也可以用 namedtuple 定义:

# namedtuple('名称', [属性list]):
>>> Circle = namedtuple('Circle', ['x', 'y', 'r'])
>>>

deque

使用 list 存储数据时,按索引访问元素很快,但是插入和删除元素就很慢了,因为 list 是线性存储,数据量大的时候,插入和删除效率很低。

deque是为了高效实现插入和删除操作的双向列表,适合用于队列和栈:

>>> from collections import deque
>>> q = deque(['a', 'b', 'c'])
>>> q.append('x')
>>> q.appendleft('y')
>>> q
deque(['y', 'a', 'b', 'c', 'x'])
>>>

deque 除了实现list的 append() 和 pop() 外,还支持 appendleft() 和 popleft() ,这样就可以非常高效地往头部添加或删除元素。

defaultdict

使用 dict 时,如果引用的Key不存在,就会抛出 KeyError 。如果希望key不存在时,返回一个默认值,就可以用 defaultdict :

>>> from collections import defaultdict
>>> dd = defaultdict(lambda: 'N/A')
>>> dd['key1'] = 'abc'
>>> dd['key1'] # key1存在
'abc'
>>> dd['key2'] # key2不存在,返回默认值
'N/A'
>>>

注意默认值是调用函数返回的,而函数在创建 defaultdict 对象时传入。

除了在Key不存在时返回默认值, defaultdict 的其他行为跟 dict 是完全一样的。

OrderedDict

使用 dict 时,Key是无序的。在对 dict 做迭代时,我们无法确定Key的顺序。

如果要保持Key的顺序,可以用 OrderedDict :

>>> from collections import OrderedDict
>>> d = dict([('a', 1), ('b', 2), ('c', 3)])
>>> d # dict的Key是无序的
{'a': 1, 'c': 3, 'b': 2}
>>> od = OrderedDict([('a', 1), ('b', 2), ('c', 3)])
>>> od # OrderedDict的Key是有序的
OrderedDict([('a', 1), ('b', 2), ('c', 3)])
>>>

注意, OrderedDict 的Key会按照插入的顺序排列,不是Key本身排序:

>>> od = OrderedDict()
>>> od['z'] = 1
>>> od['y'] = 2
>>> od['x'] = 3
>>> od.keys() # 按照插入的Key的顺序返回
['z', 'y', 'x']
>>>

OrderedDict 可以实现一个FIFO(先进先出)的dict,当容量超出限制时,先删除最早添加的Key:

# _*_ coding: gbk _*_

from collections import OrderedDict

class LastUpdatedOrderedDict(OrderedDict):

    def __init__(self, capacity):
        super(LastUpdatedOrderedDict, self).__init__()
        self._capacity = capacity
        
    def __setitem__(self, key, value):
        containsKey = 1 if key in self else 0
        if len(self) - containsKey >= self._capacity:
            last = self.popitem(last=False)
            print 'remove:', last
        if containsKey:
            del self[key]
            print 'set:', (key, value)
        else:
            print 'add:', (key, value)
        OrderedDict.__setitem__(self, key, value)
C:\Users\Administrator\Desktop>python C:\Users\Administrator\Desktop\OrderedDict
.py

C:\Users\Administrator\Desktop>

Counter

Counter 是一个简单的计数器,例如,统计字符出现的个数:

>>> from collections import Counter
>>> c = Counter()
>>> for ch in 'programming':
...     c[ch] = c[ch] + 1
...
>>> c
Counter({'g': 2, 'm': 2, 'r': 2, 'a': 1, 'i': 1, 'o': 1, 'n': 1, 'p': 1})
>>>

Counter 实际上也是 dict 的一个子类,上面的结果可以看出,字符 ‘g’ 、 ‘m’ 、 ‘r’ 各出现了两次,其他字符各出现了一次。

collections 模块提供了一些有用的集合类,可以根据需要选用。

发表评论

zh_CNChinese